Terres rares : la high-tech à quel prix?

Durant des siècles, néodyme, yttrium ou lanthane paraissaient sans valeur. Aujourd’hui, ces métaux appelés terres rares sont indispensables à la fabrication des smartphones, éoliennes et autres véhicules hybrides. Mais leur extraction demeure coûteuse et polluante. Smartphones, éoliennes, véhicules hybrides ou électriques, toutes les technologies qui nous entourent contiennent des terres rares. Durant des siècles, néodyme, yttrium, dysprosium ou lanthane paraissaient sans valeur ; nous ignorions tout de leurs propriétés — et même jusqu’à leur existence. Aujourd’hui, ce groupe de métaux difficiles à détecter constitue une matière première plus précieuse que le pétrole et représente un marché juteux, en particulier pour la Chine qui extrait la quasi-totalité de ces minerais indispensables à notre avenir. Mais les processus de séparation pour obtenir des métaux de grande pureté demeurent énergivores et extrêmement polluants — et produisent pour certains des déchets radioactifs. Un comble, lorsqu’on sait que la plupart des énergies renouvelables ont recours aux terres rares… Pourtant, personne ne semble prêt à y renoncer : les chercheurs se mettent ainsi en quête de moyens d’extraction plus propres, ou de procédés de recyclage des terres rares contenues dans les déchets industriels. De la Chine à la Saxe, en passant par la mine de Mountain Pass en Californie, ce documentaire dévoile les enjeux environnementaux, économiques et technologiques de cette industrie en plein essor.

Documentaire de Christian Schidlowski (52mn – Allemagne, 2013) :

Union Européenne : huit métaux stratégiques sous le risque de pénurie

Le Centre commun de recherche européen (JRC) alerte du risque de pénurie, d’ici à 2030 en Europe, de huit métaux stratégiques utilisés dans les cellules photovoltaïques, les turbines d’éoliennes, les batteries et moteurs des véhicules électriques et les dispositifs d’éclairage.

jrcLe dysprosium, le néodyme, l’europium, et le terbium figurent parmi les terres rares classées à haut risque de pénurie en Europe en 2020-2030 par le JRC

Dans un rapport publié le 4 novembre 2013,  le JRC a alerté du « risque de pénurie » en 2020-2030 de huit métaux stratégiques utilisés dans les technologies énergétiques à faible émission de carbone identifiées dans le plan européen SET adopté en 2008.

Ce rapport poursuit les travaux menés dans une précédente étude du JRC datée de 2011. Il s’appuie également sur les scénarios présentés en 2011 dans la feuille de route de l’UE « Energie 2050 » visant la décarbonisation du système énergétique.

Le JRC identifie 12 métaux stratégiques « critiques et quasi-critiques » pour lesquels le développement des technologies énergétiques nécessitera de s’approvisionner sur le marché mondial, sur la décennie 2020-2030. Le risque de pénurie de ces matières premières, sujettes à la volatilité des prix, « provient de la dépendance de l’UE sur les importations (Chine, ndlr), de la demande croissante à travers le monde et des raisons géopolitiques ».

Terres rares : le dysprosium « le plus à risque »

Parmi eux, huit métaux sont classés « à haut risque ». Six sont des terres rares, indispensables notamment à la miniaturisation de technologies « préoccupantes ». Elles sont utilisées pour les véhicules électriques, l’énergie éolienne et solaire ainsi que l’éclairage, souligne le JRC.

Il s’agit du dysprosium (Dy), du néodyme (Nd) et du praséodyme (Pr) utilisés pour fabriquer les aimants des génératrices éoliennes et des moteurs des véhicules hybrides et électriques. Auxquels s’ajoutent l’europium (Eu), le terbium (Tb) et l’yttrium (Y) qui servent dans les phosphores utilisés dans les ampoules, tubes fluorescents ou écrans de télévision, ainsi que le gallium (Ga) et le tellure (Te) de cadmium utilisés dans la production de cellules solaires.

Quatre autres métaux sont « quasi-critiques » : le platine (Pt) (catalyseur pour les piles à combustible), l’indium (In) (composant de cellules solaires), le graphite (C) (fabrication de piles alcalines et lithium-ion pour les véhicules hybrides et électriques) et le rhénium (Re) (alliage de turbines). Les conditions du marché pour ces métaux « doivent être surveillés au cas où ils se détériorent. Ce qui augmente le risque de goulots d’étranglement de la chaîne d’approvisionnement », préviennent les chercheurs.

Le dysprosium a été identifié comme étant « le plus à risque » parmi les terres rares. L’UE devrait exiger 25% de l’offre mondiale en 2020-2030 pour répondre à la demande de l’Union pour les véhicules hybrides et électriques et les éoliennes, table le JRC.

La demande européenne de lithium est, elle, estimée à près de 15% de l’offre mondiale tandis que celle du graphite est à 10% pour les batteries des véhicules électriques.

Autosuffisance européenne : possible ou pas ?

Augmenter l’offre primaire, favoriser le recyclage et la substitution des terres rares sont préconisés par le JRC pour limiter les risques de pénurie. Comment ? « De nombreuses initiatives » sont en cours permettant de réduire les coûts de ces métaux. Pour le gallium et le tellure (cellules solaires), les données indiquent que l’Europe dispose déjà d’un certain degré d’autosuffisance mais « des opportunités peuvent exister pour créer de nouvelles raffineries pour stimuler la reprise de ces matériaux », indiquent les chercheurs.

Des « améliorations significatives » ont déjà été réalisées en matière de recyclage des flux de déchets post-industriels dans la fabrication d’aimants ou de semi-conducteurs, souligne le JRC. Ainsi, les taux de recyclage pour le néodyme, le praséodyme et le dysprosium (utilisés pour les aimants) sont compris entre 1 et 10%. Tandis que pour le gallium (cellules solaires), ils sont de l’ordre de 10 à 25%. En revanche, les taux de recyclage s’élèvent à moins de 1% pour l’yttrium, l’europium et le terbium utilisés pour les luminophores pour l’éclairage.

Pour certains matériaux, il est également possible « de réduire l’utilisation d’un métal particulier ou le remplacer complètement ». Par exemple, afin de limiter l’usage du néodyme ou du disprosium, les moteurs à aimant permanent peuvent être remplacés par des moteurs supraconducteurs (niobium…). D’autres matières à propriété magnétique, comme le samarium allié au cobalt, peuvent être une alternative au néodyme « en termes de performance » d’aimants. La lampe à diode électroluminescente (LED) peut aussi être une alternative à la technologie d’éclairage à phosphore permettant de limiter l’utilisation du terbium et de l’europium.

Le JRC préconise d’accélérer la R&D en matière de stockage stationnaire d’énergie notamment. « Il existe de nombreuses stratégies d’atténuation des risques disponibles mais une combinaison d’actions est requise de la part des gouvernements et des industriels », estime le JRC.

Terres rares : propriétés, usages et types de gisement

Les éléments de terres rares (ETR) regroupent 17 éléments chimiques relativement abondants dans la croûte terrestre : les lanthanides (15 éléments, numéros atomiques 57 à 71), en plus du scandium et de l’yttrium.

Les ETR sont subdivisés en deux groupes, soit les terres rares légères, les plus abondantes, et les terres rares lourdes, les moins abondantes. Dans la nature, on trouve généralement les ETR agglomérés dans certains types de roches et de minerais.

Les principaux minéraux de terres rares sont la bastnaésite, la monazite, la xénotime, la parisite. Chaque minéral présente un contenu différent en terres rares. Pour séparer les éléments de terres rares, plusieurs phases de concentration minérale, d’attaque aux acides, de chloration, d’extraction par solvant, de précipitation sélective et de dissolution sont nécessaires. Des oxydes purs (à plus de 99 %) sont ensuite utilisés pour la fabrication des divers produits.

Usages

Les ETR ont commencé à être utilisés à grande échelle au cours des années 50, à la suite de la découverte de méthodes efficaces de séparation des différents éléments.

Les ETR sont utilisés dans une multitude d’applications, notamment dans le raffinage du pétrole, la fabrication de verres, de céramiques, de batteries rechargeables, d’éoliennes, de baladeurs numériques. Ils sont utilisés également dans la fabrication d’écrans de téléviseurs et d’ordinateurs, d’ampoules lumineuses ultra-efficaces, de systèmes de radar, de convertisseurs catalytiques, de superconducteurs et d’aimants permanents (notamment utilisés dans les moteurs électriques). En général, les usages sont très spécifiques.

En raison de leurs propriétés uniques, l’avenir des ETR est prometteur, particulièrement dans le domaine de la haute technologie.

Types de gisements

On distingue plusieurs types de gisements de terres rares :

  • les gisements associés aux carbonatites;
  • les gisements associés aux complexes intrusifs peralcalins;
  • les gisements associés aux formations de fer (type fer-oxydes);
  • les gisements associés à des dépôts alluviaux (placers);
  • les gisements associés à des veines métasomatiques;
  • les gisements associés aux complexes intrusifs hyperalcalins.

Gisements associés aux carbonatites

De nombreuses carbonatites sont enrichies en minéraux de terres rares. Ces carbonatites forment des massifs intrusifs de petite dimension (3 à 5 km) à l’intérieur des complexes alcalins. Elles sont enrichies principalement en terres rares légères (Castor, 2008). La minéralisation en terres rares se trouve au cœur de la carbonatite ou dans des filons, des réseaux de veines ou d’amas à l’extérieur de la carbonatite.

Les minéralisations en terres rares des gisements de Mountain Pass, Bear Lodge (États-Unis), Bayan Obo (Chine), Palabora (Afrique du Sud) ainsi que d’Oka et de Saint-Honoré (Canada) sont encaissées dans des intrusions de carbonatite.

Gisements associés aux complexes intrusifs peralcalins

Plusieurs dépôts sont associés à des roches ignées peralcalines (granite, pegmatite granitique, syénite). Ce sont des gisements de gros volumes, mais de faible teneur. Ils sont, en général, enrichis en terres rares lourdes comme l’yttrium et le zirconium et certains dépôts peuvent renfermer du béryllium, du niobium et du tantale.

Les gisements de terres rares associés aux roches ignées peralcalines sont notamment ceux de Thor Lake (Territoires du Nord-Ouest, Canada), Lackner Lake (Ontario, Canada), Strange Lake et Kipawa (Québec, Canada) ainsi que Mountain Pajarito (États-Unis).

Gisements associés aux formations de fer (type fer-oxydes)

Des minéralisations en cuivre-or-oxydes de fer contiennent aussi des ETR, de l’yttrium et de l’uranium. Ces gisements hydrothermaux, riches en magnétite, sont souvent associés au magmatisme felsique. Les ETR sont exploités à titre de sous-produits de l’extraction du fer, du cuivre et de l’or.

Les minéralisations en terres rares associées aux formations de fer comprennent les gisements Olympic Dam (Australie), Bayan Obo (Chine), Salobo (Brésil), Pea Ridge (Missouri, États-Unis), Kwyjibo (Québec, Canada).

Gisements associés à des dépôts alluviaux (placers)

Des concentrations à caractère économique de terres rares peuvent se trouver dans des dépôts alluviaux. La plupart de ces dépôts sont d’âge tertiaire ou quaternaire. Ils sont issus de la dégradation de roches granitiques ou de roches métamorphiques de haut grade et de la concentration des minéraux lourds. Des placers d’âge précambrien contiennent aussi des minéralisations en terres rares. En certains endroits, le minerai de terres rares est exploité comme sous-produit de l’extraction de minerais d’ilménite et de zircon.

Les minéralisations en terres rares associées aux placers comprennent entre autres les dépôts d’Oak Grove (Idaho, États-Unis), de Hilton Head Island (Caroline, États-Unis), d’Elliot Lake et de Bald Mountain (Ontario, Canada).

Gisements associés à des veines métasomatiques

Des minéralisations en terres rares se trouvent également dans des réseaux de veines qui recoupent des roches alcalines. Dans certains cas, il s’agit de veines de quartz-carbonate-fluorite-parisite d’origine hydrothermale tandis que, dans d’autres, ce sont des veines de roches ultramafiques ou des dykes de lamprophyre (Harvey et coll., 2002). Les minéralisations sont, en général, enrichies en terres rares légères et en yttrium.

Les minéralisations en terres rares associées aux veines sont notamment celles de Lemhi Pass et de Powderhorn (États-Unis) et d’Hoidas Lake (Saskatchewan, Canada). Au moins deux mines associées à des veines de baestnasite-barite-carbonate dans une syénite à quartz sont connues en Chine.

Gisements associés aux complexes intrusifs hyperalcalins

Les complexes intrusifs hyperalcalins (syénite à néphéline, syénogabbro, phonolite) peuvent renfermer des éléments de terres rares comme substances économiques principales, mais aussi afficher des teneurs intéressantes en tantale et en niobium .

La minéralisation en tantale-niobium et terres rares du gisement de Motzfeldt Centre, dans le sud du Groenland, est un cas typique de minéralisations associées aux complexes intrusifs hyperalcalins.

Métaux rares ou de haute technologie

Les métaux rares sont aussi désignés comme métaux stratégiques ou métaux de haute technologie. Ils comprennent, de façon non exhaustive, le lithium, leniobium, le tantale, le béryllium, le zirconium, le hafnium, le germanium, le gallium, les terres rares (au nombre de 15) ainsi que l’yttrium et le scandium. En général, il s’agit principalement de métaux non ferreux, utilisés en petite quantité avec d’autres métaux et substances chimiques dans la fabrication de plusieurs produits industriels.

Le caractère stratégique de ces métaux rares est particulièrement lié aux faits suivants :

  • La balance commerciale de plusieurs pays dépend de la disponibilité de ces métaux
  • L’industrie de haute technologie ne peut fonctionner sans un approvisionnement fiable à long terme de ces métaux et à des prix compétitifs
  • Les métaux de substitution sont en général plus chers ou moins performants
  • Le risque de rupture d’approvisionnement et la mise en place de quotas à l’importation par certains pays font pression sur le marché.
  • Il y a peu d’exploitations minières et de centres d’extraction et d’affinage dans le monde pour répondre à la demande, ce qui rend ces métaux « rares ».

Les États-Unis aussi bien que d’autres pays industrialisés considèrent que plusieurs de ces métaux sont importants pour la sécurité nationale et pour la réduction des émissions de gaz à effet de serre..

Les métaux rares sont également en demande pour répondre à de nouvelles applications et ils entrent dans la fabrication d’une grande variété de biens de consommation. Ces conditions entraînent un intérêt croissant pour la découverte de nouvelles ressources et par conséquent pour l’exploration minière.

Biens de consommation utilisant les métaux rares

  • Téléphones cellulaires, baladeurs, processeurs, pièces informatiques
  • Écrans de téléviseurs et d’ordinateurs
  • Véhicules hybrides et véhicules électriques
  • Superconducteurs
  • Aimants permanents (moteurs électriques)
  • Alliages et superalliages (aéronautique)
  • Instruments chirurgicaux et implants
  • Optique filtres pour rayons X, lasers
  • Raffinage du pétrole, additifs et catalyseurs
  • Verres et céramiques
  • Batteries rechargeables et accumulateurs
  • Éoliennes
  • Cellules photovoltaïques
  • Ampoules lumineuses ultra-efficaces
  • Systèmes de radar et équipements militaires
  • Convertisseurs catalytiques
  • Industrie chimique et industrie nucléaire
  • Produits de polissage

Terres rares : le nouvel or noir ?

Sans elles, pas d’écrans plats, de disques durs, de smartphones, de moteurs hybrides ou de panneaux solaires. A quoi servent ces métaux si convoités ? Ou les trouve-t-on ? Quels sont les enjeux de la domination chinoise dans cette industrie des terres rares ?

Les terres rares : définition

Terres rares : le nouvel or noir ?

Très convoitées, les terres rares sont un groupe de 17 métaux dont le lanthane, l’yttrium et le néodyme.

A faible teneur, on les retrouve dans les téléphones portables, les disques d’ordinateur, les systèmes de navigation, et les technologies vertes (pots catalytiques, moteurs électriques, éolien). C’est la raison pour laquelle ces minéraux sont si stratégiques. Cela représentait en 2011 un marché de 128.000 tonnes et de 1,25 milliard de dollars.

Contrairement à ce que leur nom laisse penser, ces terres ne sont pas ‘rares’. Elles sont même plutôt abondantes, dans des concentrations variées, dans toute l’écorce terrestre. En revanche, elles sont difficiles à extraire et à raffiner. Leur extraction, très polluante, est essentiellement concentrée en Chine.

Les terres rares au coeur d’une guerre économique

Terres rares : le nouvel or noir ?

La Chine ne dispose que du tiers des réserves mondiales connues mais contrôle 95% de la production de terres rares.

La concentration actuelle des mines dans ce pays, autour de la Mongolie Intérieure, s’explique par le fait que leur extraction est gourmande en main-d’oeuvre, coûteuse (40 dollars le kilo en moyenne) et conduit à l’accumulation de sous-produit toxiques, notamment radioactifs, incompatibles avec les législations occidentales. Une des principales raisons qui ont peu à peu conduit de nombreux pays, dont les Etats-Unis, à abandonner l’extraction de ces métaux.

Après être parvenue à s’assurer une situation de quasi monopole, la Chine en a profité pour imposer des quotas d’exportation qui mettent à mal les besoins des industries occidentales. La dépendance des Occidentaux a été illustrée de manière spectaculaire en 2010 quand le Japon a accusé Pékin d’avoir suspendu ses livraisons en représailles à un incident maritime. Une situation qui a poussé l’Europe, les Etats-Unis et le Japon a déposer une plainte devant l’OMC contre Pékin, les partenaires commerciaux de la Chine l’accusant de chercher à faire monter les prix et de forcer les entreprises étrangères du secteur à se relocaliser en Chine pour gagner un accès aux terres rares (pour plus d’informations, consultez les liens ci-dessous) :

Cette stratégie semble aujourd’hui se retourner contre la Chine. La production mondiale est repartie à la hausse, et les cours se sont effondrés en 2012. L’oxyde de néodymium (utilisé pour les aimants) a perdu 45 %, le cérium (polissage de verre optique, filtres à particules, téléviseurs) a chuté de 38 %, le terbium (écran à rayon X, piles à combustible) de 46 % et le dysprosium de 65 % (aimants, ampoules, disques durs…). Au mois d’octobre, la Chine a annoncé qu’elle freinait sa production de terres rares pour lutter contre la déprime des cours.

Les alternatives

Face au quasi-monopole de la Chine, des pays ont relancé l’exploration et ont rouvert d’anciennes mines, jadis non rentables, notamment celle de Mountain Pass, en Californie, qui fournissait encore en 1984 le tiers du volume mondial de terres rares. Mais elles mettront des années à être opérationnelles. En Malaisie, à Kuantan, des terres rares sont importées d’Australie par l’entreprise Lynas pour être séparées et purifiées dans une usine de traitement. D’autres projets voient le jour au Kirghizistan, en Afrique du Sud, au Canada ou au Groenland.

Un pays comme le Japon, qui importait 90 % de ses terres rares de Chine en 2009, en importait moins de 50 % au premier semestre 2012. Explorations de réserves dans le sous-sol du Pacifique, recyclage des produits high-tech… le Japon envisage toutes les solutions pour réduire la ‘dépendance minérale’ de ses industriels vis-à-vis des terres rares importées de Chine.

En avril, le conglomérat industriel japonais Hitachi a présenté un moteur électrique dépourvu de ‘terres rares’. D’autres groupes, dont le constructeur d’automobiles Toyota, travaillent sur des projets similaires.

Pour réduire leur dépendance, certaines entreprises commencent à se pencher sur le recyclage. En France, le chimiste Solvay a inauguré au mois d’octobre un atelier de recyclage sur son site de Saint-Fons. Complémentaire d’une installation à La Rochelle, il lui permet de récupérer des terres rares qui alimentent ses propres productions. Un investissement global de 15 millions d’euros.

Recyclage made in France des terres rares

 Le chimiste Solvay s’est lancé en 2012 dans le recyclage à grande échelle de terres rares. Une activité stratégique qu’il réalise dans l’Hexagone avec des technologies exclusives.

Prenez une toile de maître recouverte de pigments de couleurs. Imaginez devoir les séparer et les rassembler en tas, par couleurs. Un travail titanesque ! C’est, en quelque sorte, le défi relevé par Solvay. Le chimiste s’est lancé dans le recyclage des terres rares, ces 17 métaux utilisés dans des applications de haute technologie pour leurs performances en matière de luminescence et de magnétisme. Leurs caractéristiques physico-chimiques étant très semblables, les diviser pour les réutiliser tient de la gageure!

Solvay a lancé trois projets qui visent à extraire les terres rares puis à les séparer pour les revendre aux fabricants de trois types de produits : les batteries NiMH (nickel-métal-hydrure) des véhicules hybrides, les aimants, et les lampes à basse consommation. Les recycleurs collectent les produits concernés et fournissent au chimiste belge les mélanges de terres rares. Après séparation, ce dernier les vend aux fabricants d’équipements selon leurs besoins. L’objectif de Solvay ? Que le recyclage fournisse, suivant les terres rares, de 5% à 50% de ses ventes. Pour y parvenir, le groupe a mis au point un procédé de séparation en plusieurs étapes, inédit et protégé par des brevets maison.

caroline

(cliquer sur l’image pour l’agrandir)

ÉQUIPEMENT LOURD EXISTANT

Et si le chimiste a pu se lancer aussi vite, c’est qu’il avait à sa disposition des équipements ad hoc sur son site de La Rochelle (Charente-Maritime), mis sous cocon depuis plusieurs années. Ils datent de l’époque où Rhodia – avec lequel Solvay a fusionné il y a un an – traitait les terres rares importées de Chine. Quelques dizaines de millions d’euros ont été nécessaires pour « réveiller » et adapter ces installations au recyclage. C’est là qu’est installée la technologie phare : des batteries d’extraction liquide-liquide disposées en séries sur des dizaines de mètres. Grâce à l’emploi d’une palette de solvants, cet équipement lourd sépare successivement les terres rares en jouant sur leurs degrés de solubilité.

Le process nécessite de grandes quantités d’eau et d’acides. C’est là son principal défaut : la séparation des terres rares peut avoir un impact sur l’environnement et la santé. Solvay assure avoir disposé tout au long du cycle des systèmes de traitements des effluents liquides, grâce à une station d’épuration, et des évents gazeux, à l’aide d’une colonne de lavage et d’absorption. Hitachi, l’un des concurrents nippons du chimiste, expérimente une technique d’extraction du néodyme et du dysprosium par voie sèche, censée être moins polluante.

La filière des lampes à basse consommation et des néons a nécessité un process de traitement supplémentaire en amont : les poudres luminophores sont d’abord acheminées sur le site de Saint-Fons (Rhône), au coeur de la vallée de la chimie. Un atelier de production y a été modernisé afin d’éliminer les résidus de verre et de mercure. Leur extraction des poudres luminophores est assurée grâce à une hotte d’aspiration et à des tubes de charbon actif. Cette étape suscite malgré tout des inquiétudes chez certains représentants syndicaux. « La sécurité du personnel et le traitement des effluents représentent la moitié de l’investissement total », rassure Frédéric Carencotte, le directeur industriel de la division terres rares chez Solvay.

Protégé par deux brevets, le process de Saint-Fons a nécessité 15 millions d’euros d’investissements. La poudre de terres rares encore mélangées est ensuite transportée à La Rochelle pour subir la séparation proprement dite. Le process mis en oeuvre par le groupe belge permettra très vite d’atteindre des capacités de production de 5 000 tonnes de terres rares par an. Un chiffre supérieur aux quotas annuels d’environ 3 000 tonnes alloués à Solvay par la Chine, qui contrôle d’une main de fer 95% de la production mondiale (130 000 tonnes).

 

SÉCURISER LA COLLECTE

Pour maintenir à flots ce recyclage, la sécurisation et le développement des filières d’approvisionnement demeurent le principal enjeu. Pour chaque filière, Solvay a dû se tourner vers des recycleurs spécialisés. Umicore collecte des batteries, les fond à très hautes températures et fournit les terres rares. De son côté, Récylum collecte des lampes à basse consommation, sépare le plastique, les métaux et l’électronique et de la poudre qui contient, outre les terres rares, des traces de verre et de mercure.

Solvay est ainsi parvenu à diversifier ses sources d’approvisionnement en terres rares. « Nous avons été surpris par la baisse brutale des quotas d’exportation chinois en 2010, explique Gilles Auffret, membre du comité exécutif du groupe. Si nous constatons un retour à la normale, aucun de nos clients ne peut souffrir de problème d’approvisionnement et de volatilité des prix. » De futures filières pourraient voir le jour rapidement, en particulier pour les écrans LCD, les aimants de disque durs et, pourquoi pas, les batteries des Autolib’, les voitures électriques en libre-service à Paris.

Le recyclage des terres rares, un enjeu stratégique

Elles font aujourd’hui partie des métaux les plus précieux. Les terres rares, ce groupe de 17 minerais qui se nomment terbium, néodyme ou yttrium, s’avèrent très convoitées car indispensables à la production de la plupart des produits de haute technologie — ordinateurs, téléphones portables, écrans plats, éoliennes ou batteries des voitures électriques

.terres-rares21

Contrairement à ce que laisse entendre leur nom, elles ne sont pas si rares, puisqu’il existe de nombreux gisements de par le monde, mais leurs stocks sont finis et leur extraction est difficile, coûteuse et extrêmement polluante. Surtout, elles sont le monopole de la Chine, qui détient 37 % des réserves mondiales mais contrôle 97 % de leur exploitation et réduit chaque année les quotas d’exportation. Or, la demande mondiale augmente chaque année de 6 %, mettant le marché sous pression.

L’enjeu, aujourd’hui, est donc pour les pays de sécuriser leur approvisionnement à des prix raisonnables et limiter l’impact de la raréfaction des terres rares au niveau mondial. Trois moyens existent : réduire leur utilisation, diversifier les sources en exploitant des mines en dehors de la Chine et recycler ces minerais.

 C’est la troisième piste que cherche à développer la France, qui ne possède aucune mine de terres rares. Début 2012, le groupe chimique Rhodia rendra ainsi opérationnel, dans son usine de La Rochelle, un nouveau procédé, sur lequel il travaille depuis dix ans, permettant de recycler ces métaux.

L’objectif sera, dans un premier temps, de réutiliser les poudres luminophores qui recouvrent l’intérieur des lampes basse consommation (LBC) et qui contiennent plusieurs terres rares : terbium, yttrium, europium, gadolinium, lanthane et cérium. Pour l’instant, cette poudre est isolée et mise en décharge, lorsque les ampoules arrivent en fin de vie, alors que le reste des composants – verre, plastique, cuivre et aluminium – sont valorisés. Or, le terbium et l’yttrium font partie des terres rares les plus difficiles à trouver, les plus demandées et donc les plus chères (le terbium a ainsi vu son prix passer de 600 à 4 000 dollars le kilo en seulement deux ans). Au rythme actuel de consommation, leur approvisionnement sera critique d’ici 2014, estime, dans un rapport, l’Agence de l’environnement et de la maîtrise de l’énergie.

« Grâce à ce nouveau procédé de récupération et de séparation des terres rares, il sera possible d’extraire 17 tonnes de ces minerais, dont 15 tonnes d’yttrium, 1 tonne de terbium et 1 tonne d’europium, sur les 4 000 tonnes de lampes fluocompactes que nous recyclons », détaille Hervé Grimaud, directeur général de Récylum, l’éco-organisme en charge de l’élimination des lampes usagées. Et cette quantité pourrait considérablement augmenter si les LBC étaient davantage triées. Car aujourd’hui, seulement un tiers de ces lampes sont ramenées dans les 19 000 points de collecte que compte le territoire.

Pour augmenter ce taux de recyclage, Récylum a réalisé une opération de communication, ce lundi 17 octobre, en érigeant un faux chantier d’exploitation minière en plein cœur du quartier d’affaires de La Défense. Une mine urbaine qui s’est avérée être, une fois les barrières tombées, une boîte géante pour recycler les lampes basse consommation. Le message est clair : le plus grand gisement de métaux rares qui existe en France se trouve aujourd’hui dans nos bureaux. Une fois récupérés, les débouchés de ces minerais seront les mêmes qu’actuellement : la catalyse automobile, l’industrie verrière, les alliages métalliques, lampes ou aimants permanents.

Après la mise en place de cette filière pour les lampes, ce sera au tour des terres rares contenues dans les batteries rechargeables et les aimants des voitures électriques et des disques durs de pouvoir être recyclées, sans doute au cours de l’année 2012.

Une question se pose toutefois : le recyclage, s’il est nécessaire, sera-t-il suffisant pour faire face à la demande galopante des pays développés ? « Non, le recyclage ne pourra remplir qu’une petite partie de la demande en terres rares dans les années à venir », assure John Seaman, chercheur à l’Institut français des relations internationales, spécialiste de la politique énergétique en Chine et des terres rares. Car si les lampes fluocompactes utilisent des quantités infimes de terres rares, il n’en est pas de même pour d’autres produits technologiques. Un moteur de Prius nécessite par exemple 1 kilo de néodyme pour ses aimants. Les éoliennes offshore, elles, consomment 600 kilos par turbine pour améliorer leur fonctionnement tout en diminuant les coûts de maintenance.

« Il faut donc, dans le même temps, trouver des approvisionnements en dehors de la Chine, utiliser ces minerais de façon plus efficace et leur trouver des substituts », précise le chercheur. C’est pourquoi des entreprises commencent à développer des alternatives à l’utilisation de terres rares. Dans le secteur automobile, Toyota cherche ainsi à développer pour ses voitures hybrides, un moteur à induction sans aimant. Dans l’énergie, General Electrics a annoncé en août la mise en place d’une turbine pour éolienne moins gourmande en terres rares. Mais ces produits sont encore loin de voir le jour.